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S. S. Grigoryan [1, 2] has derived the basic equations of the dynamics of a soft soil for the case when the effect  
of rate of deformation on compressibi l i ty  can  be neglected.  Experiments [3-8] show the sui tabi l i ty  of this model  for a 

theore t ica l  study of dynamic  processes in sandy soils. Subsequent inves- 
t igat ions [6] and the data presented below make it possible to extend 
the region of app l icab i l i ty  of Grigoryan's model,  in cer tain c i rcum- 
stances, to soils in which the effect  of rate of deformation on the stress- 
strain state can not be disregarded. 

This ar t ic le  presents the results of experiments  on the effect of 
rate of deformation on the compressibi l i ty of loess soils and the yield 
condition. It is shown that, on the whole, this effect  is substantial,  but 
disappears as the rate of deformation tends to a cer tain cr i t ica l  value,  
so that there is a l imi t ing  form of the relations between the stresses and 
the deformation characterist ics  in which the rate of deformation is no 
longer represented. Obviously, there is also another l imi t ing form cor-  

responding to zero rate of deformation. The corresponding quanti ta t ive 
data are presented for loess soils. It is shown that the Mises-Schleicher  

y ie ld  condition [1, 2] does not depend on the rate of deformation. 

1. Experimental  Conditions and Method 

The object  of investigation was a loess soil of undisturbed struc- 

ture, density 1, = 1. 44-1. 47 g / c m  s and moisture content w = 3-13% 
# 7 by weight. Soil  in the form of paraff inized monol i th ic  samples was ob- 

Fig. 1 ta ined from the region of the experiments  described in [6]. The samples 
were tested on a specia l ly  designed apparatus (Fig. 1), under conditions 

of s tat ic  and dynamic  loading: The apparatus consisted of a cyl inder  1 in which the sample 3 was p laced  in a ring 2. 

The load was t ransmit ted to the sample through a piston 4. The base of the cyl inder  5 and piston 4 contained strain 
gauges 6, 7, 8 to measure the ver t ica l  stresses Oy (t). Two strain gauges 
9 were built  into the ring to measure the horizontal  stress in the sample 
Ox (t). The d isp lacement  of the piston was measured with a can t i l ever -  
type def lec tometer  10 in the form of a h igh-f requency cant i lever  arm to 
which strain gauges were bonded. The def lec tometer  rested on an ex ten-  
sible support 11, 12. The strain gauge readings were registered by an 
N-102 oscil lograph across a 8ANCh-7M amplif ier .  The dynamic  loads 

Fig, 2 
were appl ied  by means of fal l ing weights (50-200 kg). By varying the 
tr ipping height and using different kinds of cushioning i t  was possible to 
c rea te  different loading regimes for which the rate  of deformation var ied within the l imits  4-40 sec "I. For the stat ic ex-  
per iments  we used the same apparatus, the d isp lacement  of the piston being measured by means of a gauge pin 13 a t -  
tached to a stand 14. In these cases the rate of deformation was 1. 45 .10-7  sec-~. 

Since the he igh t -d i ame te r  ratio of ring 2 is 1 : 5, the effect  of friction forces along the wails of the ring may be 
neglected.  

Figure 2 shows an osci l logram of the variat ion of stresses and displacements  with t ime  obtained for a loess soil with 
7 = 1.44 g / c m  z, w = 12. 4% on the i m p a c t  testing machine  described. The first t race (from the top) relates to the stress 
ay (t) recorded by the piston strain gauge 8, the second shows the d isplacement  of the piston upon impact  u(t), the third 

and fifth correspond to the stresses Oy (t) recorded by the edge 6 and central  7 strain gauges in the base of the apparatus, 
and the fourth to the stress o x (t) recorded by the la te ra l  strain gauge 9. The t ime  divisions are 0. 002 see. 

In view of the uniformity of deformation along the d iameter  of the ring, we have 

(t) = u (t) / to .  (1. 1) 
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Here g is the deformation of the sample,  u(t) is the displacement  of the piston, and l 0 is the original  height of 
the sample. 

In this case ~ = de /dr  is given by 

t du (t) (1.2) 
- -  lo d t  

Thus, from the oscil lograms we can, at any moment ,  obtain data on the 
stresses Cry (t) and o x (t), the displacements  u(t), the strains g(t), and the defor-  
mat ion rated g (t). 

Figure 3 shows a graph of e (t) plot ted from the exper imenta l  data. Clear ly,  
in the given exper iment  for 0. 0010 -< e -< 0. 0025 the value of g varies l i t t le  and 

~ 25. 3 sec ' l ;  during unloading the rate of deformation is again almost constant 
at g ~- 2 sec -1. This enables one to plot a stress-strain diagram Oy - e for loading 
at g = const and to construct the yield condition 

T =  ~' (p), T =  ggY~, p =  - G ( % +  2a:r 

where p is the mean hydrostat ic  pressure, Jz is the second invariant of the stress 
tensor deviator  
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oij are the stress tensor components.  
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Sij = aij q- 6ijp, (i, / = 1, 2, 3) Fig. 4 

oi~ ~ 0 for i =# ], 
n i x  -=- a y ,  crzz ~ a~.~ -= o x ,  J , ,  ~ -  1/z (a  v - -  Crx)e. 

/ 

2. Results of Experiments and Discussion 

Figures 4 and 5 show the exper imenta l  relat ions Oy (~) obtained for different,  but constant for the given curve, val  
values g = const. The curves in Fig. 4 correspond to a soil with 7 = 1. 44-1 .47  g / c m  3, w = 3. 4-8. 6% and to the fol -  
lowing four values of g: i)  16. 0 sec -1, 2) 11.0 sec "1, 8) 4. 0 sec - l ,  4) 1 .4  �9 10"7 sec-1  The curves in Fig. 5 correspond 

to a soil with moisture content w = 12-18% and the following values of g: 1) 24. 3 sec - l ,  2) 13.3 see "l, 3) 1. 4 �9 10 -7 
sec "I. In Fig. 5 the tr iangles show the results of investigations of the compress ibi l i ty  of the same loess soft starting from 

the relat ions at  the shock front obtained exper imen ta l ly  in [6]. 
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The agreement  of these data with curve 3 (Fig. 5) indicates  that  for the given soil  as g increases from the cr i t ica l  
value g .  = 24. 3 sec "1 to g --* ~ (at the shock front) there is no further decrease in deformat ion at Oy = const. 

Analysis of the data points to the impor tance  of the effect  of the rate  of deformat ion on the compress ibi l i ty  of 

loess soils: with var ia t ion of ~ from 24. 3 to 1. 45 .10  -7 sec -1 the deformations at  constant stress increased by 2-3 

t imes. Note that in our exper iments  we observed two l imi t ing  positions of the oy (e) d iagram at g = const - a lower co t -  
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responding to stat ic loading (curve 4, Fig. 4, and curve 3, Fig. 5)  and an upper corresponding to g _ 24. 3 sec "1 (curve 
1, Fig. 5). The la t te r  may be ca l led  the " l imi t ing  dynamic compression diagram. " 

Simultaneous measurement  of a l l  the stress tensor components enabled us to clar i fy the question of the effect  of 
rate of deformation on the yield condition previously adopted for soft soils in the form of a Mises-Sehleicher  condition 
[1, 2] and verif ied exper imenta l ly  under explosion conditions [3-6~ 

In Fig. 6 we have plot ted the quanti t ies 

T = 1 / T ( a  u - e . ) ,  p = - 1 / 8  (o u -q- 2o , )  

for different ~. The circles correspond to ~ - 4. 0 see -1, the tr iangles to ~ = 16:0 see -1. The solid triangles correspond 
to loading, the open ones to unloading. Analysis of the data shows that in the investigated range of values of ~ a yield 
condition of the type 

j ,  = a/6 yz  (p) (2. 1) 
F (p) = kp + b (k, b = coast) 

does not depend on ~ ei ther  during loading or during unloading. 

Thus, on the basis of data on uniaxia l  compression we can construct f (o)  diagrams for e = i =cons t  in accordance 
with the formula 

a u (e) -q- 1/s ]/'2-b 
P = - -  I n_ x/3 ]/~-k = ! (0), 0 = c o n s t  (2. 2) 

where O is the cubica l  contract ion of the soil. 

The authors are grateful to S. S. Grigoryan for discussion of their  work and helpful  advice.  
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